Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli.
نویسندگان
چکیده
Although a whole arsenal of mechanisms are potentially involved in metabolic regulation, it is largely uncertain when, under which conditions, and to which extent a particular mechanism actually controls network fluxes and thus cellular physiology. Based on (13)C flux analysis of Escherichia coli mutants, we elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, CreB, CreC, Crp, Cya, Fnr, Hns, Mlc, OmpR, and UspA on aerobic glucose catabolism in glucose-limited chemostat cultures at a growth rate of 0.1 h(-1). The by far most relevant control mechanism was cyclic AMP (cAMP)-dependent catabolite repression as the inducer of the phosphoenolpyruvate (PEP)-glyoxylate cycle and thus low tricarboxylic acid cycle fluxes. While all other mutants and the reference E. coli strain exhibited high glyoxylate shunt and PEP carboxykinase fluxes, and thus high PEP-glyoxylate cycle flux, this cycle was essentially abolished in both the Crp and Cya mutants, which lack the cAMP-cAMP receptor protein complex. Most other mutations were phenotypically silent, and only the Cra and Hns mutants exhibited slightly altered flux distributions through PEP carboxykinase and the tricarboxylic acid cycle, respectively. The Cra effect on PEP carboxykinase was probably the consequence of a specific control mechanism, while the Hns effect appears to be unspecific. For central metabolism, the available data thus suggest that a single transcriptional regulation process exerts the dominant control under a given condition and this control is highly specific for a single pathway or cycle within the network.
منابع مشابه
Regulation of acetohydroxy acid synthase in streptomycin-dependent Escherichia coli.
Growth of streptomycin-dependent mutants of Escherichia coli K-12 was insensitive to valine when dihydrostreptomycin was present in a nonlimiting concentration in glucose-salts medium. Acetohydroxy acid synthase was derepressed under these conditions, owing to relaxation of catabolite repression. Valine sensitivity and catabolite repression were restored when streptomycin-dependent E. coli K-12...
متن کاملMechanism of catabolite repression of tryptophanase synthesis in Escherichia coli.
Repression of tryptophanase (tryptophan indole-lyase) by glucose and its non-metabolizable analogue methyl alpha-glucoside has been studied employing a series of isogenic strains of Escherichia coli lacking cyclic AMP phosphodiesterase and altered for two of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), Enzyme I and Enzyme IIAGlc. Basal activity of tryptophanase...
متن کاملTranscriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli.
We report here the transcriptome analyses of highly expressed genes that are subject to catabolite repression or activation mediated by the cyclic AMP receptor protein (Crp). The results reveal that many operons encoding enzymes of central carbon metabolic pathways (e.g., Krebs cycle enzymes), as well as transporters and enzymes that initiate carbon metabolism, are subject to direct Crp-mediate...
متن کاملRegulation of P-Galactosidase Synthesis in Escherichia coli by Cyclic Adenosine 3’, 5’-Monophosphate
Cyclic adenosine 3’,5’-monophosphate (cyclic AMP) increases the differential rate of synthesis of @-galactosidase in Escherichia coli made permeable by treatment with t&(hydroxymethyl)aminomethane and ethylenediaminetetraacetic acid. In normal, growing cells, cyclic AMP overcomes the transient repression of /3-galactosidase by glucose. A half-maximal effect of cyclic AMP occurs at about 7 x 10-...
متن کاملAltered end-product patterns and catabolite repression in Escherichia coli.
Dobrogosz, Walter J. (North Carolina State University, Raleigh). Altered end-product patterns and catabolite repression in Escherichia coli. J. Bacteriol. 91:2263-2269. 1966.-End products formed during growth of Escherichia coli ML30 on glucose were examined under various conditions known to promote or prevent catabolite repression of the inducible beta-galactosidase system in this organism. Cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 190 7 شماره
صفحات -
تاریخ انتشار 2008